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Review of methods that can be used in the assessment of 
atmospheric deposition 

Introduction 
Maps of atmospheric deposition of pollutants are critical in estimating the environmental impacts of 
pollution on ecosystems at risk (Fu et al., 2022). There are three different approaches for estimating 
the atmospheric deposition:  

 
1) From measurements of air and precipitation chemistry combined with statistical 

interpolation 

2) Chemical transport models (CTMs) 

3) Combined observations and atmospheric model calculations, often called data assimilation 

or data-model fusion. 
 
Under each of these categories there is a range of different approaches and methods. This report 
includes a review showing examples of results and comparison of methods for deposition calculation 
for some selected compounds. The focus will be on inorganic components (sulfur, nitrogen) and trace 
elements (cadmium, lead) since there is more data available for these. Persistent organic pollutants 
(POPs) will be also discussed briefly. 
 
The three approaches have different strengths and weaknesses, and they may complement each 
other. There are two main limitations with the statistical interpolation method (1). Firstly, having 
enough representative sites to cover the whole region. Very often there are large areas where there 
are no sites available causing large uncertainty in the interpolation between the sites. Secondly, the 
dry deposition is hardly measured directly, and it is necessary to estimate the deposition velocities 
based on literature or use modelled data. In this report we will mainly focus on precipitation data (wet 
deposition) when presenting the statistical interpolation techniques. Though one chapter discuss how 
interpolation of air concentrations are done in EEA. 
 
The CTMs (2) usually have a much higher spatial and temporal coverage and can potentially fill the 
gaps in the observational based method. CTM capabilities have improved in the last decades, however, 
there remain large uncertainties in CTM simulations due to incomplete knowledge of emissions and in 
the chemical schemes, and other sources of uncertainty. How large these uncertainties are dependent 
on which compound in question. It is critical to have sufficient number of observations that can validate 
the model output, though it is difficult to validate the dry deposition fluxes since these are scarcely 
measured, as also stated above. In this report the dispersion models developed under the Co-operative 
programme for monitoring and evaluation of long-range transmissions of air pollutants in Europe 
(EMEP) has been included. Some other models are briefly presented as well. 
 
Using observations to correct modelling results (3) have a great potential to improve the estimates of 
the atmospheric deposition. The common approach is that the model results are adjusted by the 
observations giving large weight to the observed values close to stations while using the modelled 
values in areas with no observations. There is various way of implementing measurement model 
fusion, here we will present some examples of techniques used. 
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1 Estimate wet deposition from observation 

In Poland there are observations of concentrations in precipitation at 22 monitoring sites. In addition, 
there are data available from 3 EMEP sites. Further precipitation heights for 162 precipitation stations 
can be used for better spatial information of the precipitation amount in Poland. The input data was 
given as monthly mean concentrations was aggregated to volume weighted annual concentration 
presented in Figure 1. Only a selection of the available compounds is used in this analysis to illustrate 
methods that can be applied. 
 

 

Figure 1: Annual volume weighted mean concentrations of SO4
2-, NO3

-, NH4
+, Pb, Cd in precipitation 

in 2020 from the Polish national monitoring networks and EMEP. 

 
When having observation at various locations one can use spatial statistics models to analyse the 
correlation between nearby points and from this deduce a spatial concentration field. There are 
several spatial models that can be used, such as, multiple linear regression (MLR), geographically 
weighted regression (GWR), inverse distance weighting (IDW) and kriging, and sometimes a 
combination of these. For kriging, there are several methods and approaches, like ordinary kriging 
(OK), regression kriging (RK), universal kriging (UK). The most used method is OK, but the choice of 
which kriging to use depends on the characteristics of the dataWe will not present the theory behind 
kriging in this report, there are several textbooks and peer reviewed papers describing the concept 

and the different approaches, limitations etc. The method was originally developed for geostatistical 
purposes (Matheron, 1963). 
 
IDW is a very good approach for exploring spatially dense datasets and has a faster processing time for 
large data sets compared to kriging, and it is commonly used i.e., in forecast techniques. Kriging is a 
more complex approach since it explicitly takes into account the spatial autocorrelation structure of 
the underlying data, though one of the most used interpolation techniques and in many cases make 
more accurate predictions compared to other methods (Khosravi et al, 2018; Olivier and Webster, 
2014), though there are several uncertainties implicit in the kriging methods which may induce errors 
in the interpolation if not evaluated carefully. The accuracy in any spatial interpolation techniques is 
highly dependent on the number of data points, their representativity and spatial correlation. 
In contrast to other spatial interpolation techniques such as IDW, kriging always provides an 
uncertainty estimate of the interpolated result. 
 
In Norway OK has been used since 1980 to estimate atmospheric deposition (Aas et al, 2017) of 
inorganic components, and similar method have here been applied to the Polish observations in 
precipitation and compared to IDW (see Chapter 1.2). 
 



NILU report 33/2022 

6 

1.1 Define an appropriate setup for kriging 

In principle in geospatial correlations, things that are closer are more alike than things farther apart. 
In our case this can be understood as the deposition of air pollution at regional representative sites is 
dependent on their distance to the emission sources. 
 
There are generally two main steps in the kriging procedure 1) Fit a variogram model to the data. 2) 
krige the data according to the variogram. A variogram is a model fitted to the data to describe the 
spatial autocorrelation between the observations. In a variogram plot, the distance between the points 
(observations) are related to how much the sites are correlated, illustrated in Figure 2. The x-axis 
represents the distance between pairs of points, and the y-axis represents the calculated value of the 
variogram, where a greater value indicates less correlation between pairs of points. 
 

 

Figure 2: Theoretical illustration of a variogram plot (Copied from 
https://vsp.pnnl.gov/help/Vsample/Kriging_Variogram_Model.htm). 

 
An important factor which needs to be in place for the kriging method to work properly is that the 
spatial variation (the correlations between stations) is statistically homogeneous throughout the 
surface. Though the variability may not be same in all spatial direction, so called anisotropy. If so, one 
should apply an anisotropic variogram model which is a function of both distance and direction. 
 
There are several tools that are available for doing kriging. In this case we have used the R 
programming language and the gstat package (Pebesma, E.J., 2015; Gräler et al.,2016) or kriging and 
autofitVariogram from the automatic interpolation package automap (Hiemstra et al, 2008) applied on 
the Polish precipitation data for 2020 (see Annex 1 for the code used). 
 
There are several parameters that control the fit of the variogram model and depending on which tools 
used for calculating the variogram several of these can be constrained. In the autofitVariogram in R 
there one can fix the three variogram parameter nugget, sill and range to a certain value as well as the 
model type used:  
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• The nugget is the y-intercept of the variogram (Figure 2). The nugget represents the small-

scale variability of the data. A portion of that short range variability can be the result of 

measurement error. Theoretically the origin the variogram value should be zero. 

• The range is the distance after which the variogram levels off (Figure 2), in other words the 

distance after which data are no longer correlated. 

• The sill is the variance level where the variogram flattens off (Figure 2), which equal the sum 

of variance contributions the modelling. 

• Model type.  There are five different types of models that are often used: Spherical (Sph), 

exponential (Exp), gaussian (Gau), Matern family (Mat) and M. Stein's parameterization (Ste). 

The model influences the prediction of the unknown values, particularly the shape of the 

curve near the origin differs significantly between the models. The steeper the curve near 

the origin, the more influence the closest neighbours will have on the prediction. 
 
Firstly, the kriging was done with automatic settings in the autofitVariogram, thus no constrains, top 
panel in Figure 3. The variograms for the five different components are very different, resulting in 
spatial concentrations fields which are obviously biased when comparing with the observed 
concentrations at the sites.  
 
When looking at NH4

+ and Cd which has most normal variogram plots, i.e. resemble the theoretical 
variogram shown in Figure 2, the curve level off around 4. This equals about 200km (4x 50km grid) 
which is reasonable considering the potential for long range transport of these pollutants. Variograms 
should move towards zero, and one should constrain the nugget to be able to get a curve which 
resembles a normal variogram model. 
 
Constraining the range to 4 or nugget to 0, we get other results than no constrain, but neither are very 
good, panel 2 and 3 in Figure 3. The concentrations are not spatially distributed in accordance to what 
one expect from the observational data. However, when constraining both the nugget and the range 
the variogram model seems to fit better and give spatial distributions which looks reasonable, bottom 
panel in Figure 3. 
 
Constraining the model type does not make a big difference, thus we let the autofitVariogram function 
choose the best fitting type of model. Except for NH4, which has a Sph model, the variogram models 
are Ste. 
 
We did not try to constrain the sill since that varied a lot between the different compounds. This could 
be considered when difficult to find a reasonable model fit. Further, possibly anisotropy in the 
variogram has not been assessed. This could potentially be important for some components. 
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Figure 3: Testing different constrains on the variograms and the kriging results. 
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The example above shows that the data used do not give very reliable results without constraining the 
model. Several factors affect the reliability of the experimental variogram. For the case here it is 
especially two main issues: 
 

• Enough sampling points. In general, the more data you have the greater is the accuracy. If 

too few data it is impossible to get reliable results. I.e., if the interval is larger than the 

correlation ranges the empirical variogram will be flat thus all the variation occurs within a 

shorter distance than between the sites and the model cannot be used for predicting the 

spatial distribution. 

• Representativity of the sampling points. Outliers can cause serious distortions in geostatistics 

and difficulties in getting correct fit with the variograms. 
 
When the variograms and/or kriging results do not seem reasonable one needs to check if the input 
data are correct or should be taken out. The kriging results are based on the input data in Figure 1 and 
there is obviously inconsistency at a few places. Figure 4 shows that there are obviously two places 
were adjacent sites are very different. This can be due to topographic reasons, local sources, or 
contaminations. These data need to be evaluated and changed or deleted to improve the variogram 
model thus more reliable kriging results. 

 

Figure 4: Annual concentration of sulfate in precipitation in Poland in 2020 highlighting sites which 
are inconsistent. 

 
One should also look carefully at other years to get a best understanding of what are normal results. 
In the examples above we have used same constrains for all the compounds. This is not necessarily 
correct but simplified to illustrate the procedure. 
 
One should also include the statistics evaluation of the variance and the spatial prediction errors to 
better evaluate if the best variogram model to use.  
 

1.2 Compare interpolation techniques 

The ordinary kriging (OK) with the constrains nugget=0 and range = 4, as described in Chapter 1.1 has 
been compared inverse distance weighting (IDW) for SO4, NO3, NH4, Cd, Pb and precipitation amount 
(Figure 5). 
 
The OK and IDW maps look quite similar, though there are some general differences. The IDW maps 
have higher concentrations around the points than seen in the OK maps, especially if neighbouring 
sites have very different concentration levels. This is because IDW is an exact interpolator whereas 
kriging-based methods are only exact if the nugget is equal to zero, which does not seem to be the 
case here, though we have forced the model with nugget = 0. For precipitation amount there are much 
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higher number of sampling points and there are not those big discrepancies in neighbouring sites 
causing very similar results for all the three methods. 
 
One should compare the statistics evaluation of the variance, the spatial prediction errors to better 
evaluate if the models show reasonable results and if not where are the main uncertainties. Can be 
some regions which are more difficult to map than others. 
 

 
 

 

Figure 5: Comparing the spatial distribution of wet deposition in Poland using Ordinary Kriging (OK) 
that has been constrained with nugget=0 and Range = 4, and inverse distance weighting 
(IDW). 
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1.3 Calculate wet deposition from kriged results 

To calculate wet deposition the concentrations are multiplied with the precipitation amount. 
The precipitation amounts are kriged at the same resolutions as the concentrations and wet deposition 
in 2020 is shown in Figure 6. 
 

 

Figure 6: Wet deposition of various component in Poland in 2020 calculated using kriged 
concentrations multiplied with kriged precipitation amount in a 50x50 km grid (old EMEP 
grid). Observations used are superimposed. 

 
To obtain higher resolution of the deposition one could use precipitation amount generated from 
other services instead of using the kriging on the observed annual precipitation amount. High 
resolution climatological dataset provided by either national or European meteorological services are 
available and tested more extensively than the simple kriging technique proved here. The Polish 
meteorological service IMGW-PIB provide data to the European Climate Assessment & Dataset project 
(https://www.ecad.eu) who make daily gridded observational dataset (E-OBS) of precipitation and 
other meteorological parameters, from 1950 to now. In Norway, the national product from the MET 
service with 1x1km gridded precipitation (https://github.com/metno/NWPdocs/wiki/MET-Nordic-
dataset)  is used to obtain high resolution wet deposition. This dataset using a combination of 
measured data from rain gauges, radars and models. These high-resolution observations can be 
combined with kriged data in coarser resolution to get fine scale deposition. This can be important 
especially in areas in undulant terrains where the precipitation amount may vary significantly over very 
short distances while the concentration gradient may be less varied. 
 
An easy way of increasing the resolution is to krige the data into higher resolution. The polish data has 
been kriged into the EMEP 0.1x0.1o grid and wet deposition in same resolution has been calculated, 
Figure 7. This to enable easier comparison with the EMEP model, Figure 10. However, one should be 
careful in decreasing the grid size without having sufficient number of sites to provide that fine coarse 
information. In order to avoid these overly smooth results, for higher spatial resolution it might be 
useful to apply spatial auxiliary variables (e.g. using UK or regression kriging) that are to some extent 
correlated with the variable to be interpolated. 
 

https://www.ecad.eu/
https://github.com/metno/NWPdocs/wiki/MET-Nordic-dataset
https://github.com/metno/NWPdocs/wiki/MET-Nordic-dataset
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Figure 7: Wet deposition of various component in Poland in 2020 calculated using kriged 
concentrations multiplied with kriged precipitation amount in 0.1x0.1o EMEP grid. 
Observed depositions are superimposed. 

 

1.4 Summary, points to note for statistical kriging 

 

• For successful kriging it is important that the sites are representative, thus it is necessary with 

carefully assessment the representativity of the sites. When neighbouring sites show very 

different concentrations (before kriging), it may indicate that both are not representative for the 

area. This causes problems in the variogram models and predictions biased. 

 

• It’s important to have enough sites that reveal the spatial gradient in the area of interest. One 

way to increase the spatial coverage is to include data from neighbouring countries to improve 

the predictions in the border areas. 

 

• Test different grid size for kriging. The grid size of the output maps needs to match the sampling 

density and scale at which the processes of interest occur. One can always try to produce maps 

by using the most detail grid size that our predictors allow us. Then, we can slowly test how the 

prediction accuracy changes grid sizes. 

 

• Try out different constrains in defining the variogram models (i.e. nugget, range, sill and model). 

If the data show an anisotropy this should be considered added to the variogram model, 

including the angle of the principal direction (strongest correlation). 

 

• Instead of applying kriging of the precipitation amount as shown in this report one should seek 

high resolution climatological dataset provided by either national or European meteorological 

services. 
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2 Observation-based mapping of European air quality using geostatistics 
(ETC/HE) 

The European Topic Centre on human health and the Environment (ETC/HE) and its predecessors have 
been operationally generating annual observations-based concentration maps of air quality over 
Europe for many years. The method is based on geostatistical spatial interpolation of station 
observations with the help of various auxiliary variables. The advantage of a geostatistical approach 
over more simplistic spatial interpolation methods such as inverse distance weighting is that the 
former explicitly takes into account the spatial structure (autocorrelation) of the data and further 
provides an indication of the interpolation uncertainty. More specifically, the geostatistical method 
used within the ETC/HE is residual kriging (also known as regression kriging, kriging with external drift, 
or universal kriging) (Goovaerts, 1997; Chiles and Delfiner, 2009; Wackernagel, 2013). Compared to 
ordinary kriging, which often tends to produce unrealistically smooth maps for air quality applications, 
residual kriging allows for the exploitation of the spatial patterns available within the auxiliary 
datasets, and thus results in more realistic and detailed air quality maps.  
 
Input data to the approach includes the station observations and various spatial auxiliary variables. 
The latter are typically: 
 

• Output from the EMEP MSC-W model (Simpson et al., 2012). 

• Meteorological parameters (surface solar radiation, temperature, wind speed, relative 

humidity, soil moisture) from the ERA5 reanalysis (Hersbach et al., 2020; Muñoz-Sabater et 

al., 2021). 

• Elevation from GMTED2010 (Danielson and Gesch, 2011). 

• Population density and -totals (Eurostat, 2014). 

• Land cover from CLC20181. 

• Road type vector data (Meijer et al., 2018). 

• For the annual average of nitrogen dioxide (NO2) satellite observations, the vertical column 

density of NO2 from the TROPOspheric Monitoring Instrument (TROPOMI) onboard of the 

Sentinel-5P platform (Veefkind et al., 2012; Van Geffen et al., 2020). 
 
The method uses a linear regression model between the station observations and the predictor 
variables with subsequent kriging of the residuals, where the variogram is estimated using a spherical 
function. As the spatial autocorrelation of the station observations varies significantly between urban 
and rural stations, interpolation is carried out separately for rural and urban areas and the results are 
subsequently combined into the final map. More details of the approach used in the ETC/HE can be 
found in Horálek et al. (2021). 
 
The maps produced as part of the ETC/HE have been used for various applications including the annual 
“Air quality in Europe report” published by the European Environment Agency (EEA, 2020). Figure 8 
shows an example of the 2019 annual average of PM2.5. 
 

 
1 https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 
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Figure 8: Example of a spatially interpolated European annual average air quality map of fine 
particulate matter for the year 2019 produced within the ETC/HE. The coloured symbols 
show the location and measured value of all air quality monitoring stations used in the 
mapping. From Horálek et al. (2021). 
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3 Modelling deposition of particulate matter, acidifying and eutrophying 
components, metals and POPs  

Atmospheric pollution has profound effects on ecosystems, climate, and human health, and high 
concentrations and deposition of nitrogen and sulfur can be a challenge. One of the ways high levels 
of pollutants can impact ecosystems and soil nutrient levels is via the process of wet deposition. Wet 
deposition involves the removal of polluting trace gases when they dissolve in cloud or rain droplets 
and are then removed by precipitation. Though to a lesser degree, the ecosystems can also be 
impacted by dry deposition. Dry deposition is the process of pollutants impacting the ground, a plant, 
or another surface and subsequently being removed from the atmosphere. Because it is dry, this 
process is entirely driven by winds and gravity, not rainfall or fogs. Atmospheric chemistry and 
transport models (CTMs) are important tools to understand sources and impacts of nitrogen and sulfur 
chemistry and potential mitigation and to further our knowledge of wet deposition. Such models offer 
complementary information to observation-based methods alone by offering continuous spatio-
temporal coverage. Their limitation is that we may expect the information from models to be less 
accurate than observation-based methods, especially estimates close to the sites, depending on the 
robustness in the emission estimates and the model scheme. 
 

3.1 Modelling deposition of particulate matter, acidifying and eutrophying components  

For studies of air pollution and deposition in Europe, the EMEP MSC-W (European Monitoring and 
Evaluation Programme Meteorological Synthesizing Centre - West) chemistry transport model is a 
useful tool. The model has been developed by MET Norway (Simpson et al., 2012; 
https://www.emep.int) and is an open-source Eulerian grid model used for applications ranging from 
scientific research to policy development (e.g. Bergström et al., 2014; Karl et al., 2019; Jonson et al., 
2017; McFiggans et al., 2019, Ge et al., 2021). The standard model uses 21 terrain-following vertical 
layers, with the pressure ranging from around 1000 hPa (surface level) to 100 hPa (highest level). 
Output surface concentrations for major species are adjusted to be equivalent to 3 m above the 
surface as described in Simpson et al. (2012). Parameterisation of the wet deposition processes in the 
EMEP model includes both in-cloud and below-cloud scavenging of gases and particles. 
 

The EMEP model is often run with gridded anthropogenic emissions from CEIP (EMEP Centre on 
Emission Inventories and Projections) which are categorized into 11 SNAP sectors. The emissions are 
also conducted and prepared for modelling using the 13-sector GNFR system or 19-sector GNFR_CAMS 
system (after 2020). However, the model can also be run with any other gridded emission files as long 
the abovementioned SNAP or GNFR sectors are used. 
 

The standard meteorological drivers for the EMEP model are from the Integrated Forecast System 
model (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), named ECMWF-

IFS (Fagerli et al., 2019; Pommier et al., 2020). These data have a resolution of 0.1 x 0.1 degree and 
cover the entire Europe and the eastern EECCA countries. However, the EMEP model is relatively 
flexible when it comes to meteorology and can be run with other drivers than ECMWF-IFS. 
 

Every year a comprehensive EMEP report is published, which presents transboundary fluxes of 
particulate matter, photo-oxidants, acidifying and eutrophying components. Figure 9 is taken from the 
last report (Fagerli et al., 2022) and shows total wet deposition of reduced nitrogen (ammonia and 
ammonium) in 2020, where modelled values are compared to measurements at EMEP sites. For 

reduced nitrogen, the annual average over all EMEP sites is 0.62 mgN/m2day, whereas the modelled 

average is 0.67 mgN/m2day (Appendix D in Fagerli et al., 2022). The spatial correlation between 
measurements and model is 0.64. For wet deposition of oxidized nitrogen, the spatial correlation 
between observations and model is somewhat higher, i.e. 0.75. 
 

https://www.emep.int/
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Figure 9: Modelled wet deposition of reduced nitrogen (mgN/m2) in 2020, with EMEP observations 
on top (triangles). From Figure 2.14 in Fagerli et al. (2022). 

 

The EMEP model has gradually become more user friendly, where preferred parameters and output 
options are specified in ascii input files. The map projection and resolution of model output are 
automatically adjusted to match the meteorological input files. The users often need flexibility 
regarding map projection and resolution, model domain and time period, thus, the last years it has 
become more common to run the EMEP model with WRF meteorology. 
 
WRF - Weather Research and Forecast model (http://www.wrf-model.org; Skamarock et al., 2008) is a 
mesoscale numerical weather prediction system designed to serve both operational forecasting and 
atmospheric research needs. WRF is freely available and has a large number of users all over the world. 
It is designed to be a flexible, state-of-the-art atmospheric simulation system suitable for use in a broad 
range of applications across scales ranging from meters to thousands of kilometres. 
 
The combination of WRF and EMEP (WRF-EMEP) is frequently used in Norway to study the impact of 
strong emission sources (e.g., industry) and deposition close to the sources. For such inventories, a 
spatial grid resolution of 1km is typically used. WRF-EMEP has also been applied in other parts of the 
world, for example as the core models of an air pollution forecasting system in the Hubei province in 
China, and in projects linked to offshore oil and gas industry (e.g., Karl et al., 2015). 
 
The modelled results available from https://www.emep.int/mscw/mscw_moddata.html with 
consistent timeseries from 1990 to 2020.  I.e., the same data as presented in Figure 9 can be prepared 
from the NetCDF files available, and in Figure 10 these are compared with all the Polish data from 
2020. 

 

Figure 10: Wet deposition of sulfate, nitrate and ammonium in Poland in 2020 calculated by the 
EMEP model, with observations superimposed. 

 

http://www.wrf-model.org/
https://www.emep.int/mscw/mscw_moddata.html
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There are also other models that can be used for assessing deposition of nitrogen and sulfur. Poland 
uses the chemical transport model GEM-AQ (Global Environmental Multiscale model- Air Quality, 
Kaminski et al., 2008), as presented in Chapter 3.2.2. 
 

3.1.1 Dry deposition of trace gases 

This section describes some of the theory related to the process of dry deposition and is designed to 
give a summary of the current state of the art on the study of this process. It is the intention that this 
information could be used to formulate the required specifications for a call to tender aimed at 
developing a dry deposition service at the national level in Poland. Furthermore, it is necessary to 
describe dry deposition separately from wet deposition because the same means for observing wet 
deposition of pollutants cannot be applied in the case of observing dry deposition of pollutants in the 
environment. Indeed, the measurement of dry deposition is extremely complex and it can only be 
measured indirectly. As a result, observations of dry deposition are not used to study the 
environmental impacts of this process and modelling represents the current state-of-the-art for its 
study. 
 
Dry deposition involves the removal from the atmosphere of trace gas pollutants via their interaction 
with the land surface. This interaction can take different forms, i.e., dissolution into surface water, 
chemical reaction with organic matter, and even adsorption, which is a chemical term for when gases 
stick to solids. Due to these different processes, the different properties of pollutants, and the varied 
nature of the land surface, simulating dry deposition is a complex task. 
 
Chemical transport models use parameterisations in order to simulate dry deposition and to try to 
reduce some of this complexity of representing this process across many surface types for different 
gases, while still providing a plausible physical model. The parameterisations currently in use are based 
on an electrical current resistance-analogy model (Wesely, 1989; Zhang et al., 2003) whereby 
resistances in series and in parallel represent simultaneously the competing deposition of gases via 
different processes. Figure 11 represents the most commonly resistance types and how they link 
together in series and in parallel. 
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Figure 11: Schematic diagram showing the different kinds of resistance used in parameterisations of 
dry deposition. The three main resistances, Ra (aerodynamic resistance), Rb (quasi-laminar 
layer resistance), and Rc (canopy resistance) are arranged in series. There are then three 
systems of resistance arranged in parallel, Rst (stomatal resistance), Rinc (in-canopy 
resistance) and Rg (ground resistance) in series together, and Rext (external leaf 
resistance). Rext consists of Rleaf (leaf resistance, and Rcut (cuticular resistance) in series 
with one another. 

 
The three main resistance types (aerodynamic, quasi-laminar layer, and canopy resistance) combine 
together in series by taking the reciprocal of their sum, 
 

𝑉𝑑 =
1

𝑅𝑎+ 𝑅𝑏+ 𝑅𝑐
 

 
which yields a quantity termed deposition velocity, Vd. Deposition velocity can then be used to 
calculate the pollutant concentration flux to the surface, F, by multiplying it with the pollutant 
concentration, C. 

𝐹 = 𝐶 × 𝑉𝑑 
Dry deposition velocities are therefore the parameter that mediates the deposition of pollutants to 
the surface within this conceptual model. The simulation in models of the various types of resistance 
that control deposition velocity are linked to different meteorological variables and land surface 
properties. For example, aerodynamic resistance is a measure of much the level of turbulence in air 
over the surface, which is linked to wind speed, vertical stability, and surface roughness (a measure of 
the height and spacing of surface obstructions like vegetation and buildings). Aerodynamic resistance 
is therefore highly dependent on having good meteorological data including good spatial and temporal 
coverage. 
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In another example, the canopy resistance is highly dependent on vegetation characteristics such as 
plant functional type (i.e., forest type, crops, shrubs, etc.), the amount of foliage quantified by leaf 
area index, and photosynthetic activity. Photosynthetic activity is important because it affects whether 
plant stomata are open or closed, and stomata represent an important deposition mechanism for 
gases. Modelling the deposition over vegetation therefore requires detailed knowledge of land use 
and vegetation mapping as well as data or a model of plant photosynthetic activity during the diurnal 
cycle. 
 
Dry deposition velocities can vary greatly in space due the different processes described above. Figure 
12 gives an example of the of the spatial variability one can expect for SO2, NO2, and NH3 dry deposition 
velocity over Poland. In addition to the spatial heterogeneity of these data, there are also significant 
uncertainties for estimating dry deposition velocities due to uncertainties in land surface properties 
and uncertainties in the dry deposition resistance model parameters. Figure 13 shows the dry 
deposition velocities estimated by a vegetation model that is based on satellite observations of leaf 
area index, and Figure 14 shows the absolute differences resulting from using these two different 
vegetation schemes. Similarly, Figure 15 shows the kind of differences we can expect from different 
simulations based on a different dry deposition scheme. Various different schemes exist based on the 
resistance-analogy method, e.g., the original Wesely (1989) scheme that is still widely used, a more 
recent yet still widely used scheme, Zhang et al. (2003), and the scheme implemented within the EMEP 
chemical transport model, Simpson et al. (2012). 
 
In addition to the dry deposition of gases, it is important to add dry deposition of aerosol to the total 
budget of dry deposition. Dry deposition of aerosols is driven by turbulence and shows a strong 
dependence on particle size. The smaller the particles the smaller the deposition rate. Thus, fine 
aerosols have a longer lifetime and have potential to be transported several hundred kilometres before 
deposited, depending on weather and surface conditions. 
 
Figure 16 shows the spatial variability in total dry deposition of SOx, NOx, and NHx over Poland in 2020 
simulated by the EMEP model. 
 
 

SO2 NO2 NH3 

   

Figure 12: Dry deposition velocities for SO2, NO2, and NH3 over Poland for 2020 as calculated by the 
SURFEX land surface model (using the EMEP dry deposition scheme). The land surface 
model was run with a standard vegetation simulation scheme. Units: m.s-1. 
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SO2 NO2 NH3 

   

Figure 13: Dry deposition velocities for SO2, NO2, and NH3 over Poland for 2020 as calculated by the 
SURFEX land surface model (using the EMEP-based dry deposition scheme). The land 
surface model was run with vegetation derived from satellite observations of leaf area 
index. Units: m.s-1. 

 
 

SO2 NO2 NH3 

   
 

Figure 14: The difference in simulated dry deposition velocities for SO2, NO2, and NH3 over Poland for 
2020 between a simulations where the land surface model was run in a standard 
configuration and where the land surface model was run with vegetation derived from 
satellite observations of leaf area index. The results show the satellite-derived vegetation 
minus standard simulation difference. Units: m.s-1. 

 
 

SO2 NO2 NH3 

   

Figure 15: The difference in simulated dry deposition velocities for SO2, NO2, and NH3 over Poland for 
2020 between results from the SURFEX land surface model run using the EMEP-based dry 
deposition and Wesely (1989) dry deposition schemes. The results show the EMEP minus 
Wesely dry deposition data. Units: m.s-1. 
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Figure 16: Total dry deposition of sulfur, oxidized- and reduced nitrogen in Poland in 2020 calculated 
by the EMEP model. Units: mg.m-2. 

 
One important point to raise is the contrast between the spatial variability of dry deposition velocity 
(as shown in Figure 12 and Figure 13) and dry deposition flux (as shown in Figure 16). The difference 
in spatial patterns arises from the fact that deposition flux relies on the concentration of the pollutant, 
Thus, a suitable model for simulating atmospheric concentrations of pollutants must be used in 
conjunction with a model of dry deposition in order to derive fluxes. 
 
Neither deposition fluxes nor deposition velocities are operationally monitored. Instead, only isolated 
observations over specific land use types exist which have been used to help to validate the approach. 
Modelling of dry deposition therefore remains the only method in existence to estimate dry deposition 
processes over large spatial scales and for continuous periods of time. 
 
Points to note: 

• Deposition modelling using a resistance analogy model provides a suitable means of estimating 

dry deposition for reactive gases over large spatial scales, different surface and for continuous 

periods of time. 

• Differences in representation of vegetation and in deposition scheme can introduce uncertainties 

into estimates of dry deposition processes. 

• Adequate care should be taken to ensure sufficient quality of underlying deposition model, land 

use and vegetation input data should be of high quality, and meteorological parameters should 

be taken from a reliable source. 

• The dry deposition velocities need to be coupled with a model of atmospheric pollution of 

sufficient quality in order to guarantee good quality estimates of dry deposition pollutant fluxes. 

 

3.2 Modelling heavy metals and POPs 

POPs are a group of toxic, persistent, and semi volatile chemicals capable to be accumulated in 
environmental compartments and in biological chains. Likewise, heavy metals bio-accumulate and are 
toxic to biota. A unique feature of POPs and mercury is their ability for re-emission. To evaluate the 
long-range transport and deposition of these pollutants, a multi-compartment modelling approach is 
required. The exchange with and accumulation in the main environmental compartments 
(atmosphere, soil, seawater, and vegetation) is described by basic processes: emission, long-range 
transport, deposition, degradation, and gaseous exchange between the atmosphere and the 
underlying surface. 
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3.2.1 GLEMOS modelling framework (EMEP MSC-East) 

The global modelling framework GLEMOS is a multi-scale multi-pollutant simulation platform 
developed for operational and research applications within the EMEP programme [Travnikov and 
Jonson, 2011]. The framework allows simulations of dispersion and cycling of heavy metals and 
persistent organic pollutants in the environment with a flexible choice of the simulation domain (from 
global to local scale) and spatial resolution. The modular architecture of the modelling system allows 
flexible configuration of the model set-up for a specific research task and pollutant properties. 
Currently, the modelling system includes three major groups of substances: mercury, particle-bound 
heavy metals (Pb, Cd) and POPs.  
 
GLEMOS allows application on different geographical scales with various spatial resolutions. The base 
model grid on a global scale has horizontal resolution 1°×1°, and the standard regional model domain 
covers the EMEP region (30°N-82°N, 30°W-90°E) with a spatial grid that has a changeable resolution 
down to 0.1°×0.1°. In addition, a variety of smaller domains can be used for national scale case studies. 
Vertically, the model domain covers a height up to 10 hPa (ca. 30 km). The current vertical structure 
consists of 20 irregular terrain-following sigma layers, with the first 10 layers covering the lowest 5 km 
of the troposphere and the height of the lowest layer is about 75 m. 
 
GLEMOS includes parameterizations describing atmospheric, ocean, soil, and media exchange 
processes. More detailed descriptions of the model parameterisations and approaches is available in 
a series of technical reports (Travnikov and Ilyin, 2005; Gusev et al., 2005; Tarrason and Gusev, 2008; 
Travnikov et al., 2009; Jonson and Travnikov, 2010; Travnikov and Jonson, 2011; EMEP MSC-E Report 
2021). 
 
The emission datasets for model assessment of HMs and POPs long-range transport within the EMEP 
region are prepared by Centre of Emission Inventories and Projections (CEIP) on the basis of officially 
submitted data (http://www.ceip.at/, latest available: 2019). The estimates of wind re-suspension of 
particle-bound heavy metals (Pb, Cd) and gaseous re-emission of Hg are based on the model 
parameterization that is still under development (Travnikov and Ilyin, 2005; Gusev et al., 2006; Gusev 
et al., 2007). 
 
Like EMEP model for assessing particulate matter, photo-oxidants, acidifying and eutrophying 
components (Simpson et al 2018), the meteorological input information is typically generated from 
the operational analysis data of the ECMWF using the meteorological preprocessor based on the WRF. 
Land cover data were obtained from the International Geosphere-Biosphere Programme (IGBP) data 
layer of the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS, Land 
Cover data product MCD12Q1, version 6, Friedl et al., 2019). 
 
GLEMOS was extensively evaluated in several numerical experiments and multi-model studies within 
the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) and multi-model assessments 
within the Global Mercury Observation System (GMOS) project (Travnikov et al., 2017) and the Global 
Mercury Assessment 2018 (AMAP/UN Environment, 2019). 
 
EMEP MSC-E Report (2021, 2022) serves as supporting material if the reader is interested in the latest 
assessments done by the MSC-E on heavy metals and POPs (including what datasets were used as input 
and how the model was set up. The modelled  total depositions are available at 
https://www.msceast.org/pollution-assessment/emep-domain-menu/data-hm-pop-menu For wet 
and dry deposition specifically, MSC-E provide this data off line. Figure 17 shows the comparison 
between modelled wet deposition of Cd and Pb and Polish observations in 2020 in  
 

http://www.ceip.at/
https://www.msceast.org/pollution-assessment/emep-domain-menu/data-hm-pop-menu
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Figure 17: Wet deposition of cadmium and lead in Poland in 2020 calculated by the EMEP models 
with observations superimposed. 

 
An assessment of cadmium atmospheric pollution levels in Poland in 2014 in presented in Ilyin et al 
(2018). This study includes an analysis of national emission and monitoring data, model-based source 
apportionment in particular Polish voivodships and pollution in the selected cities.  
 

3.2.2 Other models available  

Multimedia compartment models have been used to evaluate environmental fate on different scales. 
The following models are just some examples of models available that include atmospheric, soil and 
ocean modules and a parameterization describing the exchange processes between air and surface 
compartments. 
 

• DEHM-POP was developed to study the atmospheric transport and environmental fate of POPs 

(Hansen et al., 2004). It is based on the Danish Eulerian Hemispheric Model (DEHM, Christensen, 

1997), a 3-D Eulerian dynamical atmospheric. DEHM has also been expanded to study the 

atmospheric transport of lead (Christensen, 1999). 

• NEM (nested multimedia fate and transport model for organic contaminants, Beivik et al., 2021) 

builds on two existing multimedia fate and transport models (MFTMs) builds upon CoZMo-POP2 

(Wania et al., 2006) and BETR-GlobalM (Macleod et al., 2011), two models for predicting the 

long-term behaviour of POPs in the physical environment. NEM adopts major parts of the code 

from CoZMo-POP2 and supplements it with parts of the parameterization of BETR-Global. A key 

feature of NEM is the opportunity to operate the model across different spatial scales and 

resolutions to focus on a specific region of the globe, offering increasing resolution with 

increasing proximity to a given target region of interest. 

• MPI-MCTM (Max Planck Institute multicompartment chemistry–transport model, Lammel et al., 

2001) based on a general circulation model of the atmosphere, ECHAM4 (Roeckner et al., 1996). 

• GEOS-Chem is a global 3-D model of atmospheric chemistry driven by meteorological input from 

the Goddard Earth Observing System (GEOS) that was extended to simulate PAHs to improve 

POPs modelling (Friedman and Selin, 2012). 
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3.3 Modelling capabilities in Poland 

GEM-AQ (Global Environmental Multiscale model- Air Quality, Kaminski et al., 2008) is a modelling 
system for tropospheric chemistry and air quality that has been used by the Warsaw University of 
Technology since 2003. This modelling system was intended to be used by air quality management 
authorities operationally (Struzewska and Kamiski, 2010). A high-resolution nested forecast at 5 km 
resolution over Poland (and surrounding countries) was implemented in December 2012 
(EcoForecast.EU, Kaminski and Struzewska, 2013) and, since 2015, there is a cooperation with the 
Copernicus Atmosphere Monitoring Service (CAMS, Marécal et al., 2015). CAMS is based on state-of-
the-art numerical air quality models developed in Europe and each of the eleven partners provide 
regional daily forecasts of the main atmospheric pollutant concentrations on a 10 to 20 km horizontal 
resolution. The models also perform daily retrospective analyses of pollutants near the surface by 
assimilating 1-day old observations from the Near-real-time (NRT) service for air quality measurements 
over Europe from the European Environmental Agency (EEA). In addition, the models are constantly 
verified against European surface station observations for O3, NO2, SO2, CO and PM10 and PM2.5 through 
maps and statistical indicators. Currently it is the Institute of Environmental Protection – National 
Research Institute (IEP-NRI) that is providing the regional air quality data.  
 
GEM-AQ integrates the Global Environmental Multiscale model (GEM) (Côté et al., 1998a), developed 
at the Canadian Meteorological Centre and used for operational weather prediction, with air quality 
chemistry, including the gas phase, aerosol and cloud particles, wet chemistry, emission, deposition 
and transport processes. GEM-AQ has also been augmented to study POPs (Kamiski et al. 2020, Gong 
et al., 2007; Huang et al., 2007). The GEM-AQ model has been run in several configurations ranging 
from a global (O’Neill et al., 2006) and regional domain (Kaminski et al., 2008) to high resolution studies 
(Struzewska and Kaminski, 2008) and showed good agreement with observations of aerosol optical 
properties, gaseous species concentrations, and seasonal variation of POPs in the atmosphere.  
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4 Measurement model fusion (MMF) 

The overall concept of MMF involves bias correcting CTM using observational data to create fused 
deposition maps (Fu bet al 2022). National MMF products have been developed in U.S (Schwede et al., 
2014), Canada (Schwede et al., 2019), and Sweden (Andersson et al., 2018). Other national products 
are under developments like in Norway (Aas et al., 2017). The World Meteorological Organization’s 
Global Atmosphere Watch Programme (WMO GAW) has initiated a project specifically focused on 
improving the tools for MMF products with the aim of providing maps of Global Total Atmospheric 
Deposition (GTAD). The MMF GTAD project is presented by Fu et al. (2022) and here they present 
conceptual methodology as described in Figure 18. 
 
 

 
 

Figure 18: A general methodology for producing global total deposition maps as presented by 
Fu et al. (2022). 

 
In this example, for both wet and dry deposition, the concentrations from the model and the 
observations are fused to create maps of concentrations before calculating the deposition. It is better 
to do the fusion on concentrations in air and precipitation rather than deposition, since the former has 
a smoother spatial variation which is beneficial for the method.  A higher resolution can be achieved 
in the final deposition fields by combining the data analysed concentration fields with high resolution 
boundary layer meteorology and precipitation, meaning if the precipitation dept map has higher 
resolution than the concentration maps. 

 
How the fusion between observations and models are done is defined by Fu et al. (2022), different 
methods are used. I.e.: 
 

• In Sweden, Andersson et al (2018) perform a variational data (2dvar) analysis using the 

MATCH model fused with observations from national networks and neighbouring countries. 

• In US, the total deposition (TDEP) products have been developed over many years and is 

working operational (https://nadp.slh.wisc.edu/committees/tdep/). Schwede et al presented 

https://nadp.slh.wisc.edu/committees/tdep/
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their method in 2014: “The measured data were interpolated into grids using inverse-

distance weighting (IDW). The maximum distance of influence used in the IDW were 

determined from examining the spatial correlation in the CMAQ gridded average seasonal 

concentration data using a variogram analysis. For each chemical and season, they plotted 

the sample variogram and then fitted an exponential covariance model with three 

parameters (nugget, sill, and range) using a nonlinear least squares algorithm. The 

covariance model was then normalized and plotted against distance. Distances 

corresponding to a covariance of 0.7 were determined for each chemical species for each 

season and used in the IDW”. 

• In Canada, the ADAGIO model Canada (Atmospheric Deposition Analysis Generated from 

optimal Interpolation from Observations described by Schwede et al, 2019. Measured 

concentrations used to adjust modelled concentrations from ECCC’s GEM–MACH (Global 

Environmental Multiscale–Modelling Air quality and Chemistry) model using optimal 

interpolation techniques which minimizing the differences between the model and 

measurements. 

• In Norway the deposition of nitrogen and sulfur for the period 2012-2016 combining 

observations and EMEP model described by Aas et al, (2017).: “For all measurement points, 
the difference between the measured value at that point and the modelled value in the 
corresponding grid cell is calculated. This difference is interpolated spatially using radial 
basis functions, giving a continuous two-dimensional function describing the difference 
at any point within the modelled grid. The combined maps are derived adjusting the 
model results with the interpolated differences, giving large weight to the observed 
values close to stations, and using the modelled values in areas with no observations. 
The range of influence of the measured values has been set to 500 km for all the 
species”. 

 
The CTM model provides dry deposition velocities. Depending on the CTM used, deposition velocities 
may be available as grid averaged or land-cover specific values. These dry deposition velocities are 
combined with the fused air concentration field to calculate the total dry deposition Figure 18. Total 
deposition is found by combining wet and dry deposition. 
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5 General remarks and recommendations 

A general recommendation is that both models and observations should be used when assessing the 
atmospheric deposition.  Combining observations and modelling improves the modelled estimates by 
reducing model biases and provides a more sophisticated method for describing the variation between 
measurement sites than merely using interpolation methods of measurements such as kriging. 
 
For wet deposition, there are usually more observations and interpolation can give reliable spatial 
information. It is important to use precipitation amount from the denser meteorological network 
comparted to the network for chemical composition. One should seek high resolution climatological 
dataset provided by either national or European meteorological services. 
  
For dry deposition one should either use only model results or combining measurement-model, i.e., 
dry deposition velocities should be taken from models. 
 
One should test different methods and approaches, assess the differences to better understand which 
method or combination of methods is best in each case. It might be different depending on different 
components and the availability of data and model results. One should check if the methods are 
sensitive to differences between seasons. Table 1 gives an overview of which methods are available 
and recommended to use for the different components.  When using the results from atmospheric 
transport models it is important to use observations for validation. 

 

Table 1: Overview of the different approaches recommended for estimating atmospheric 
deposition. 

Component Observations,  
spatial interpolation methods 

Chemical transport 
modelling 

Measurement 
model fusion 

SO4, NO3, NH4  
wet deposition 

X  
(if sufficient number of observations combined 
with dense national network on precipitation 

amount) 

X X 

SO4, NO3, NH4  
dry deposition 

Not recommended 
(possible to apply kriging on concentrations 

combined with dry deposition velocities from 
literature or model) 

X X 

Cd, Pb  
+ other trace elements 

wet deposition 

X 
(if sufficient number of observations and 

combined with national network on precipitation 
amount) 

X maybe 

Cd, Pb  
+ other trace elements 

dry deposition 

Not recommended X maybe 

Hg  
wet and dry deposition 

Not recommended 
(too few sites and bidirectional fluxes) 

X - 
 

-POPs  
wet and dry deposition 

Not recommended 
(too few sites and bidirectional fluxes) 

X - 

 
When using observations, it is important to carefully assess whether they are representative for a 
larger area and of sufficient quality. To do this one need to involve people who knows the data and 
have experience in data handling and evaluation of the quality and representativity in the observations 
used. For the statistical method it is necessary to have some statistical knowledge. It is easy to get 
wrong results just applying an interpolation technique. It is also recommended to include experts in 
chemical transport modelling in the assessment of atmospheric deposition.  
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Appendix A  
 

R script used for kriging the Polish precipitation data 
# Script for kriging polish precipitation data.  
# Prepare concentration data as  
#calcualte emepx emepy for lon lat for polish sites 
# Constraining the variograms with nugget = 0 and range = 5 
 
library(tidyverse) # wrangling tabular data and plotting 
library(sf) # processing spatial vector data - the easy way 
library(sp) # processing spatial vector data - the way gstat needs it 
library(raster) # processing spatial raster data. 
library(gstat)   # The most popular R-Package for Kriging (imho) 
library(automap) # Automatize some (or all) parts of the gstat-workflow  
library(patchwork) # packages to make pretty plots 
library(viridis)# packages to make pretty plots 
 
 
#Defining a target grid, include the file with emep50 grid 
grid_emep50 <- read.table("C/emepgrid_pl.csv", sep = ",",header = TRUE) 
df_grid <- st_as_sf(grid_emep50, coords = c("emep50i", "emep50j")) %>%  
  cbind(st_coordinates(.)) #Convert to {sf} 
 
# making our grid work for gstat 
grd_sp <- as(df_grid, "Spatial") # converting to {sp} format 
gridded(grd_sp) <- TRUE             # informing the object that it is a grid 
grd_sp <- as(grd_sp, "SpatialPixels") # specifying what kind of grid 
 
#Read the file with conc of 2020 
df_2020 <- read.table("C/conc2020.csv", sep = ",",header = TRUE) 
 
# make a loop to do all compunds 
for (comp in c('so4','no3','nh4','pb','cd')){ 
   
  df = df_2020[c("emepx", "emepy",comp)]  
  colnames(df)[3]  <- "conc"    # change column name for x column 
  df <- df[complete.cases(df), ] # delete rows with NANs 
   
  # Convert to {sf} because that is the best way to store spatial points 
  df_sf <- st_as_sf(df, coords = c("emepx", "emepy")) %>%  
    cbind(st_coordinates(.)) 
   
  #Creating a Variogram 
  vario <- gstat::variogram( 
    conc~1, 
    as(df_sf, "Spatial") # switch from {sf} to {sp} 
  ) 
   
  #Fit variogram model, fix Nugget and Range 
  fit.variog<- automap::autofitVariogram(conc~1, as(df_sf, "Spatial"), fix.values = c(0,4,NA),)  
   
  #Plot variogram with fit on screen 
  plot(vario, fit.variog, pch=19, cex = 2, lwd = 3) 
  plot(automap::autofitVariogram(conc~1, as(df_sf, "Spatial"),fix.values = c(0,4,NA),), pch=19, cex = 2, lwd = 3) 
   
  #Export variogram plot 
  png(paste("C:/",comp,"_2020_vario.png",sep="")) 
  plot(automap::autofitVariogram(conc~1, as(df_sf, "Spatial"),fix.values = c(0,4,NA),), pch=19, cex = 2, lwd = 3)  
  dev.off() 
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  # Ordinary Kriging (OK) 
  OK <- krige( 
    conc~1,                   # conc is our variable and "~1" means "depends on mean" 
    as(df_sf, "Spatial"),      # input data in {sp} format 
    grd_sp,                    # locations to interpolate at 
    model = fit.variog         # the variogram model fitted above 
  ) 
   
  # IDW 
  IDW <- idw( 
    conc~1,                    # conc is our variable and "~1" means "depends on mean" 
    as(df_sf, "Spatial"),      # input data in {sp} format 
    grd_sp,                    # locations to interpolate at 
  ) 
     
  # A function to plot rasters 
  plot_my_gstat_output <- function(raster_object, object_name){ 
     
    df <- rasterToPoints(raster_object) %>% as_tibble() 
    colnames(df) <- c("emepx", "emepy", "conc") 
     
    ggplot(df, aes(x = emepx, y = emepy, fill = conc)) + 
      geom_raster() + 
      ggtitle(label = object_name) + 
      scale_fill_viridis(option = "H") + 
      theme_void() + 
      theme( 
        plot.title = element_text(hjust = 0.5) 
      ) 
  } 
   
  # plot observations 
  p_obs <- ggplot( 
    data = df, 
    mapping = aes(x = emepx, y = emepy, color = conc) 
  ) + 
    geom_point(size = 5) +  
    ggtitle(label = "Observations") + 
    scale_color_viridis(option = "H") + 
    theme_void() + 
    theme( 
      plot.title = element_text(hjust = 0.5) 
    ) 
   
  p_OK <- plot_my_gstat_output(raster(OK), paste("Ordinary Kriging",comp)) 
  p_IDW <- plot_my_gstat_output(raster(IDW), paste("IDW")) 
   
  #plot observations and kriging together 
  print((p_OK + p_IDW + p_obs) + plot_layout(guides = 'collect'))  
   
 
  #Export plot 
  png(paste("C: /maps",comp,"_2020_krige.png",sep="")) 
  p_OK <- plot_my_gstat_output(raster(OK), paste("Ordinary Kriging",comp)) 
  p_IDW <- plot_my_gstat_output(raster(IDW), paste("IDW")) 
  print((p_OK+ p_IDW + p_obs) + plot_layout(guides = 'collect')) 
  dev.off() 
   
  #Export csv file of kriged observation 
  write.csv(p_OK[["data"]],(paste("C:/",comp,"_emep50_2020_krige.csv",sep="")),row.names = TRUE) 
  write.csv(p_IDW[["data"]],(paste("C:/",comp,"_emep50_2020_IDW.csv",sep="")),row.names = TRUE) 
} 
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